In this 2nd Volume of ‘Handbook on Theory and Practice of Bitumen Recovery from Athabasca Oil Sands’, the industrial practice of the recovery of bitumen has been presented from mining to bitumen separation and the production of initial commercial products. The review of past work is extensive. The authors provide a detailed description of slurry preparation and conditioning from the perspective of the individual particles in the oil sand, trace the life cycle of the mineral particles and bitumen droplets, and define the role of air bubbles. Parallel to this mechanistic examination of oil sands processes, the description of the process equipment involved is exhaustive and will provide a firm foundation for future work. For new engineers entering this industry, the work described in this Volume will be enormously valuable, will prevent the retracement of unproductive areas, and allow for rapid technological advancements.

During early commercial development, water and air were essentially ‘free’, and the cost of their use was not an important part of the economic equation. Few had linked global warming to man-made carbon dioxide emissions – and water seemed to be in plentiful supply. In this current Volume, pathways are described that will reduce the impact of oil sands development on regional air and water resources, and on the land involved in the recovery operation. The focus of research on land reclamation and environmental protection should certainly help to establish a useful level of communication between the industry and those who are vigorously against the oil sands development.

Volume II clearly identifies the huge impact of the oil sands industry on the economies of Alberta, Canada, and the U.S.

from the Foreword by
C. W. (Clem) Bowman
Contents

Acknowledgements .. XVII
From the Editors ... XIX
Foreword ... XXI

Chapter 1: Geology of Canada’s Oil Sands, Reserves, and Development
 by F.J. Hein, R. Marsh, and T. Hurst ... 1
 1.1 Introduction .. 1
 1.2 Definition and Origin of Bitumen/Heavy Oil ... 3
 1.3 Canada’s Oil Sands Resources and Reserves 5
 1.3.1 Resources/Reserves Terminology ... 5
 1.3.2 Resources/Reserves Estimates .. 6
 1.4 Oil Sands Geologic Framework and Depositional Models... 7
 1.4.1 Athabasca Grosmont Bitumen Deposit 9
 1.4.2 Athabasca Wabiskaw-McMurray Bitumen Deposit .. 12
 1.4.3 Cold Lake Clearwater Bitumen Deposit 18
 1.4.4 Peace River Bluesky-Gething Bitumen Deposit...... 21
 1.4.5 Saskatchewan Oil Sands Prospect 25
 1.5 Resource Estimates and Development Issues 25
 1.5.1 Carbonate Bitumen Deposits ... 27
 1.5.2 Athabasca Clastic Deposits .. 27
 1.5.3 Cold Lake Clastic Deposits .. 28
 1.5.4 Peace River Clastic Deposits .. 29
 1.6 Issues and Challenges ... 29
 1.7 Summary .. 30
 1.8 References .. 32

Chapter 2: Mining Methods and Mine Planning
 by T. Demorest, P. Read, K. Jonah, F. Payne, W. Kosik, and R. Beers 41
 2.1 Introduction .. 41
 2.2 Legislative Requirements and Permits ... 41
 2.3 Mine Engineering .. 42
 2.4 Mine Design and Layout ... 44
 2.4.1 Mining Limit Economic Definitions and Ore Body
 Analysis .. 44
Chapter 2: Mine System Design

2.4.2 Waste-to-Ore Ratio ... 44
2.4.3 Total Volume to Net Recoverable Bitumen (TV/NRB) 45
2.4.4 Recovery of Bitumen from the Oil Sands 45
2.4.5 Economic and Physical Mining Limits 46
2.4.6 Operating Criteria .. 46
2.5 Production Demands and Initial Mine Plans 47
2.6 Mine Equipment Technology Selection 49
2.7 Mine Infrastructure .. 52
2.8 Pre-Overburden and Oil Sand Production Mining Activities 53
2.9 Overburden Removal ... 54
2.10 Oil Sand Mining .. 54
2.11 Mine Equipment Fleet Production Metrics 60
2.12 Mining Operations ... 61
2.13 Tailings and Water Management ... 64
2.14 Summary ... 68

Chapter 3: Slurry Preparation and Conditioning

by G. Cymerman ... 71
3.1 Synopsis ... 71
3.2 Introduction .. 72
3.3 Historical Note .. 73
3.4 General Considerations .. 79
 3.4.1 Economy of Scale .. 79
 3.4.2 Transportation Distances ... 81
 3.4.3 Ore Preparation ... 81
3.5 Slurry Conditioning ... 82
 3.5.1 Pipeline Conditioning .. 83
 3.5.2 Conditioning Subprocesses ... 83
3.6 Early Operations ... 87
 3.6.1 Tumblers ... 88
 3.6.2 Vibrating Screens ... 94
3.7 Hydrotransport Development .. 95
 3.7.1 Slurry Preparation .. 96
 3.7.2 Pipeline Slurry Conditioning ... 100
 3.7.3 Extraction Auxiliary Production System (EAPS) 103
 3.7.4 Low-Energy Extraction ... 104
 3.7.5 Optimized Low-Energy Process 104
Chapter 5: Bitumen Separation
by V. Wolff

5.1 Introduction
5.2 Process Flow Sheet
5.3 Settling Vessels
 5.3.1 Sizing Settling Vessels
 5.3.2 Feedwell Design
 5.3.3 Middlings Withdrawal System Design
 5.3.4 Underflow Withdrawal System Design
 5.3.5 Vessel Control Strategy
 5.3.6 Process Control Systems
5.4 Secondary Recovery
 5.4.1 Flotation Cell Design
 5.4.2 Temperature Control for Outdoor Installations
 5.4.3 Froth Launders and Froth Crowders
 5.4.4 Flotation Circuit
 5.4.5 Machine-Specific Average Retention Time
 5.4.6 General Notes About Flotation Cells
 5.4.7 Flotation Columns
5.5 Tertiary Recovery
5.6 Hydrocyclones
 5.6.1 Basic Parameters for Standard Cyclone
 5.6.2 Flow Rate
 5.6.3 Slurry Viscosity
 5.6.4 Feed Piping and Distribution
 5.6.5 Mounting Angle
 5.6.6 Materials of Construction
 5.6.7 Pressure Drop Calculations
 5.6.8 Control
5.7 References
Chapter 15: Approvals

15.1 Overview

15.1.3 Alberta Environment .. 547
15.1.4 Alberta Culture and Community Spirit 548
15.1.5 Government of Canada .. 548
15.1.6 Municipal Permits .. 549

15.2 Approvals .. 549

15.2.1 Regulatory Requirements ... 550
15.2.2 Application Process .. 553
15.2.3 Approval Process ... 554

15.3 Operations .. 555

15.3.1 Reporting ... 555
15.3.2 Compliance Requirements ... 555
15.3.3 Inspections, Audits, and Investigations 556

15.4 Non-compliance Reporting .. 557

15.4.1 Water ... 557
15.4.2 Air ... 558
15.4.3 Land .. 558

15.5 Stakeholder Consultation .. 559

15.5.1 First Nations .. 559
15.5.2 Métis .. 560
15.5.3 Environmental Non-Government Organizations 560
15.5.4 Public ... 560

15.6 Regional Committees .. 561

15.6.1 Municipality of Wood Buffalo 561
15.6.2 Cold Lake and Lakeland ... 562
15.6.3 Peace River ... 563

15.7 Government Policy Development and Industry

Relations ... 563

15.7.1 Oil Sands Developers Group 563
15.7.2 Canadian Association of Petroleum Producers 563

15.8 Notes added in Proofs .. 564

Chapter 16: Mineral Byproducts

by J. Oxenford, D. Omotoso, and Q. Liu 565

16.1 Introduction ... 565

16.2 Mineralogical Composition of the Athabasca Oil Sands 566

16.2.1 Elemental Analysis .. 566
16.2.2 Mineralogical Composition 568

16.3 Potential Heavy Mineral Products 573

16.3.1 Minerals of Interest ... 573
16.3.2 Separation Characteristics of Oil Sands Heavy Minerals .. 573
16.3.3 Economic Potential .. 575
16.4 Clay Products .. 576
 16.4.1 Clay Minerals of Interest ... 576
 16.4.2 Separation of Kaolinite from Tailings 577
 16.4.3 Economic Potential .. 581
16.5 References .. 581

Chapter 17: Building a New Operation
by J. Romero .. 585
17.1 Introduction .. 585
17.2 What is the Vision? .. 585
17.3 Is There a Project? .. 586
 17.3.1 What is the Geology of the Lease and What Does that Drive? ... 586
 17.3.2 What Will the Regulatory Environment Be? 587
 17.3.3 Where is Your Market? What is Your Product? 588
 17.3.4 What Technologies Suit the Lease, the Regulatory Environment, and the Market, and Still Generate a Business Case? .. 588
 17.3.5 Life Cycle Analysis .. 590
 17.3.6 Is There a Business Case? ... 590
 17.3.7 What is the Exit Strategy? ... 590
17.4 What is the Culture? .. 591
 17.4.1 What are the Mission, Values, and Goals? 591
 17.4.2 Building the Project Team ... 591
 17.4.3 Building the Operations Team ... 592
17.5 Regulatory Obligations .. 595
 17.5.1 Fulfilling Regulatory Obligations ... 595
 17.5.2 Fulfilling Obligations to Stakeholders 596
17.6 Developing the Plans: From Design to Operation to Closure .. 596
 17.6.1 Design Development: Finalizing the Scope 597
 17.6.2 Project Execution Plan .. 598
 17.6.3 Commissioning and Start-up Plan 598
 17.6.4 Operational Plan: Organization and Asset Management .. 599
19.1.4 CERI’s US-Canada Multi-Regional I/O Model (UCM-RIO 2.0) ... 643
19.1.5 US-Canada Trade Table and Model Structure 648
19.1.6 Disaggregation of National Results for the U.S. and Interpreting Impacts ... 650
19.1.7 Limitations of the I/O Approach 652
19.2 Data Sources and Assumptions 654
19.2.1 Data Sources .. 654
19.2.2 CERI Oil Sands Projections – Realistic Scenario 655
19.3 Economic Impacts of Oil Sands Development 660
19.3.1 Economic Impacts in Canada 660
19.3.2 Economic Impacts in U.S. 668
19.4 Conclusions .. 670
19.5 Acknowledgement ... 671
19.6 References .. 671

Index .. 675